MTH 304: Metric Spaces and Topology Practice Assignment V: Separation axioms

- 1. Reading assignment: Read through the following proofs:
 - (a) \mathbb{R}^2_{ℓ} is not normal (see Example 3, page 196 in Munkres).
 - (b) \mathbb{R}^J is not normal (see Problem 9, page 204 in Munkres).
- 2. Let $f, g: X \to Y$ be continuous maps. Then show that set $\{x \in X \mid f(x) = g(x)\}$ is closed in X.
- 3. Let $p: X \to Y$ be a closed continuous and surjective map. Show that if X is normal, then so is Y.
- 4. A closed continuous and surjective map $p: X \to Y$ is said to be *perfect* if for each $y \in Y$, $p^{-1}(\{y\})$ is a compact subset of X. Let $p: X \to Y$ be a perfect map.
 - (a) Show that if X is regular, then so is Y.
 - (b) If X is locally compact, then so is Y.
 - (c) If X is second countable, then so is Y.
- 5. Let G be a compact topological group, and let X be a topological space such that $G \curvearrowright X$ (i.e G acts on X). Then show that:
 - (a) If X is normal, then so is X/G.
 - (b) If X is locally compact, then so is X/G.
 - (c) If X is second countable, then so is X/G.
- 6. Show that if $\prod_{\alpha \in J} X_{\alpha}$ is normal, then so is X_{α} , for each $\alpha \in J$.
- 7. Show that a locally compact Hausdorff space is regular.
- 8. Show that a regular Lindelöf space is normal.
- 9. A space X is completely normal if every subspace of X is normal. Show that a space X is completely normal if, and only if for every pair $\{A, B\}$ of subsets of X such that

$$\bar{A} \cap B = A \cap \bar{B} = \emptyset,$$

can be separated by open sets.

- 10. A T_1 space X is said to be *completely regular* if for each point $x \in X$, and each closed set $A \subset X \setminus \{x\}$, there exists a continuous function $f: X \to [0, 1]$ such that $f(x_0) = 1$ and $f(A) = \{0\}$.
 - (a) Show that subspaces and products of completely regular spaces are completely regular. (See Theorem 33.2, Munkres).
 - (b) Show that a locally compact Hausdorff space is completely regular.
 - (c) \mathbb{R}^J with the box topology is completely regular.

- (d) Every topological group is completely regular. (See Problem 10, page 211 in Munkres.)
- 11. Let X be a compact Hausdorff space. Show that X is metrizable if, and only if X is second countable.
- 12. A space X is said to be *locally metrizable* if each point $x \in X$ has a neighborhood that is metrizable in the subspace topology.
 - (a) Show that a compact Hausdorff space is metrizable if, and only if its locally metrizable.
 - (b) Show that a regular Lindelöf space is metrizable if, and only if its locally metrizable.
- 13. Show that in a metrizable space X, the following are equivalent.
 - (a) X is bounded under the topology \mathcal{T}_d induced by any metric d.
 - (b) Every continuous function $\phi : X \to \mathbb{R}$ is bounded.
 - (c) X is limit point compact.
- 14. let X be a topological space, let $A \subset X$. Then a retraction of X into A is a continuous map $f: X \to A$ such that $f|_A = i_A$. A subspace A of a topological X is called a retract of X if there exists a retraction $r: X \to A$.
 - (a) Show that the retract of a Hausdorff space is closed.
 - (b) Show that no two-point subset of \mathbb{R}^2 can be retract of \mathbb{R}^2 .
 - (c) Show that S^1 is a retract of $\mathbb{R}^2 \setminus \{0\}$.